Colles de mathématiques
Nature de l'intégrale impropre …
Sujet
Étudier la nature de l'intégrale
∫
0
+∞
e−x2 dx
Corrigé de l'exercice de maths: Intégrales généralisées
Correction
est continue sur .
Il suffit donc d'étudier la convergence de l'intégrale en .
On compare pour cela à une intégrale Riemann:
en , en posant et par croissances comparées, on a
,
ce qui signifie que, en , .
Or, est intégrable en , et donc l'intégrale est convergente.
Or, est intégrable en , et donc l'intégrale est convergente.