🔍

Colles de mathématiques

Couple de variables géométriques


Sujet


Soit X et Y deux variables aléatoires à valeurs dans N*, telles que: P((X = i)∩(Y = j)) = a2i+j , pour tous i , j de N*.
  1. Calculer a.
  2. Déterminer les lois marginales de X et Y.
  3. X et Y sont-elles indépendantes?

Corrigé de l'exercice de maths: Couples de variables aléatoires

Correction


  1. Il faut que a≥0 et que ensuite:
     i,j≥1 a2i+j = 1 +∞i=1 a2i = 1 a = 1
  2. Pour iN*, on a :
    P(X = i) = +∞j=1 P((X = i)∩(Y = j)) = +∞j=1 12i+j = 12i+∞j=112j = 12i = 12×12i−1
    X suit donc une loi géométrique de paramètre 1/2.
    Par symétrie, il en est de même pour Y.
  3. P(X = i) × P(Y = j) = 12i+j = P((X = i)∩(Y = j))
    ce qui montre que les variables aléatoires sont indépendantes.