🔍

Colles de mathématiques

Espérance de l'inverse d'une loi de Poisson


Sujet


Soit X une variable aléatoire suivant une loi de Poisson de paramètre λ.
Calculer l'espérance de la variable aléatoire 11 + X .

Corrigé de l'exercice de maths: Variables aléatoires discrètes

Correction


Soit la variable aléatoire Y = 11 + X .
Comme X prend ses valeurs dans N, Y prend ses valeurs dans 11 + k; k≥0 avec les probabilités
\[P\left(Y=\frac 1{1+k}\right)=\frac{\lambda^k}{k!}e^{-\lambda}.\]


On calcule alors
\[\begin{array}{lcl}
E(Y)&=&\dsp\sum_{k\geq 0}\frac{1}{1+k}\tm\dfrac{\lambda^k}{k!}e^{-\lambda}\\[1.2em]
&=&\dsp\sum_{k\geq 0}\frac{\lambda^k}{(k+1)!}e^{-\lambda}\\[1.4em]
&=&\dfrac1{\lambda}\dsp\sum_{k\geq 0}\dfrac{\lambda^{k+1}}{(k+1)!}e^{-\lambda}\\[1.4em]
&=&\dfrac{e^{-\lambda}}{\lambda}\left(e^{\lambda}-1\right)\\[1em]
&=&\dfrac{1-e^{-\lambda}}{\lambda}.
\enar\]